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Measurements of sectional and total forces and the spanwise correlation of vortcx 
shedding are presented for a circular cylinder in planar oscillatory flow at  
Keulegan-Carpenter numbers, KC,  in the range from about 4 to 55. The viscous 
parameter /3 is in the range from around 100 to 1665. Circulation measurements 
around a circuit close to and enclosing the cylinder, are also presented. A mode- 
averaging technique was used for both sectional forces and circulation measurements 
and this gave, for typical modes of vortex shedding, time histories over an average 
cycle. The transverse force and the circulation tend to fluctuate in sympathy with each 
other, except around the instant of flow reversal when the force changes sign but the 
circulation remains high. Values of the strength of shed vortices, estimated from the 
measured circulation, are found to be comparable with steady-flow results. For 
KC 5 30, modes of vortex shedding occur over distinct ranges of KC with spanwise 
correlation high a t  the centre of a KC-range for a particular mode of shedding but 
low a t  the boundaries. Above KC z 30 the correlation is no longer very sensitive to 
KC and the correlation length is estimated to be equal to 4.65 cylinder diameters. In 
the transverse vortcx-street regime (8 6 KC 5 15) thc cylinder was found to 
experience a steady transverse force, thc coefficient of which is estimated to be about 
0.5 at  KC = 14. 

1. Introduction 
The flow around a circular cylinder with relative sinusoidal motion along a 

diameter is a function of the Keulegan-Carpenter number KC and the Reynolds 
number R,. Here KC’ = 2n A I D ,  where A is the amplitude of the motion and D is the 
cylinder diameter. The Reynolds number is based on D and the maximum velocity 
of the cylinder, U,. Hence Re = KC (L)*/vT),  where v is the kinematic viscosity and 
T is the period of the cylinder motion. Following Sarpkaya (1976) the viscous 
parameter, D 2 / v T ,  will be denoted by /3. When KC is sufficiently small, the boundary 
laycr on an oscillating cylinder is everywhere attached, laminar, stable and two- 
dimensional. The only force on the cylinder is directed along the line of motion and 
has been given (e.g. Stokes 1851 ; Wang 1968) as a function of /3. As KC increases, it 
appears (Honji 1981 ; Sarpkaya 1986) that the laminar boundary-layer flow becomes 
unstable, forming three-dimensional vortices along the cylinder span. Sarpkaya 
(1986) has shown that if p is less than about 2600, this instability is followed by 
boundary-layer separation and then transition of the separated shear layer from 
laminar to turbulent flow; whereas for larger /I, transition occurs within the 
boundary layer before flow separation. Tllrhen KC is large, the separated shear layers 
form vortices with a size of the ordcr of the cylinder diameter. When these vortices 
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form asymmetrically they lead to an additional force transverse to the flow direction. 
Dcpending on KC some or all of the shed vorticity is swept back past the cylinder 
during flow reversal. The result is an extremely complex flow field which is not 
directly amenable to theoretical solution. 

This papcr describes the development of the flow from KC z 4, where transverse 
forces are tirst observed, to KC of about 60, and is a companion to the paper by 
Bearman rt al. (1985) which concentrates on low-KC flow (i.e. K C S  10). The 
understanding of this class of flow has received considerable attention because of the 
ncetl to prd ic t  wave forces on offshore structures. A comprehensive review of earlier 
studies has bcen given by Sarpkaya & Isaacson (1981). The majority of the previous 
rescarch has been directed towards the in-line force, and the usual practice has been 
to represent this forcc by iviorison's cquation (iviorison P t  ai. i95u) : 

dU 
F=~pDUIU/C,+axpD2-CC,,  dt 

where k' is the in-line force per unit length of the cylinder, and U is the velocity of 
the imposed relative motion. C, and C, are drag and inertia coefficients respectively, 
and are functions of KC and /3 (for example see Keulegan & Carpenter 1958 and 
Sarpkaya 1976). 

The transverse force is more difficult to analyse since it is more sensitive to the 
ways i n  which vortices are formcd and move. Several authors have proposed ranges 
of KC for particular types of vortex-shedding behaviour (Singh 1979 ; Sarpkaya & 
Isaacson 1981 ; Hearman et al. 1981 ; Iwagaki, Asano & Nagai 1983; Williamson 1985). 
An indication of the complexity of the flow is given by the fact that Iwagaki et al. 
(1983) suggested that the range of KC from 2.9 to about 30 be separated into eight 
rcgimcs. Even when KC and /3 are fixed, more than one mode of shedding is possible, 
and  the flow may switch between the possible modes - sce Kcarman et al. (1981). 
Most of the experimcntal information available on traverse forces relates to the 
dominant frequency and the maximum value of the force. It has been suggested by 
scveral authors that if detailed information on vortex strengths and motion are 
availablc thcn the Blasius equation can be used to  calculate the development of both 
in-line and transverse forces. Using this equation Maul1 & Milliner (1978) have 
described qualitatively how the development of transverse and in-line forces can be 
related to the generation and movement of vortices. This idea has also been used by 
Ikeda & Yamamoto (1981), and by Williamson (1985). The former estimated the 
motion and strength of vortices from photographs and used the results to make 
rough predictions of the development of the transverse force. The initial motivation 
for the work described here was thc desire to acquire information that could be used 
to test this approach and that might provide a. better understanding of the role of 
vortices in fluid loading. 

As a first stcp towards achieving this objective, it was necessary to  develop a 
scheme for obtaining average cycles of the time history of the transverse force for 
different modes of vortex shedding. The mode-averaging scheme adopted for this 
purpose will be described fully in $ 2 .  Preliminary results have been presented in 
Bearman et al. (1981), together with a, quasi-steady model for predicting the 
development of a transverse force. This model assumes that during a flow cycle the 
Strouhal number S = f D / U ,  formed from instantaneous values of the vortex- 
shedding frequency f and the flow velocity, is constant. Over the range of Reynolds 
number studied here the data is well fitted with S = 0.2, which is the value 
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appropriate to steady flow a t  the same Reynolds number. A similar model was 
proposed by Verley (1982) but he did not make quantitative comparisons with 
experimental data. A full description of the quasi-steady model is given by Bearman. 
Graham & Obasaju (1984) where comparisons of time histories between theory and 
measurement are made down to KC-values of about 6. It was found that even at  low 
KC where the prediction of the model is, as expected, less good, the frequency of the 
transverse force is still quite well represented with a Strouhal number of 0.2. These 
preliminary studies indicated that even though many different vortex patterns are 
exhibited in oscillatory flow, the basic mechanism that governs the rate a t  which 
vortices develop may be the same as in steady flow. 

In this paper, we aim to extend the research reviewed above and to consider a 
number of issues raised by Bearman et al. (1981). They reported that, contrary to 
what is sometimes supposed, the spanwise correlation of vortex shedding in planar 
oscillatory flow may be poor, even a t  low KC. They showed that a t  KG-values of 
about 10 a sideways vortex street develops and they speculated that in addition to 
the unsteady transverse force, the cylinder may also experience a time-mean 
transverse force. We report on the use of the mode-averaging technique to make 
measurements of the circulation around a circuit enclosing the cylinder. The time 
history of this circulation will be compared with that of the transverse force. 
Hopefully such information will provide a better physical understanding and help in 
the development of more realistic numerical models. 

2. Experimental arrangement 
2.1. Dem-iption of experiments 

Planar oscillatory flow was realized by utilizing the resonance of a U-tube water 
tunnel with a fixed cylinder immersed in the flow and also by oscillating a model in 
a water channel. The U-tube has been described fully by Singh (1979). The working 
section, which is in the horizontal limb of the tube, is 0.61 m square and 1.5 m long. 
The period, T, of oscillation of the water in the U-tube is 3.34 s. The amplitude can 
be varied up to 0.6 m peak-to-peak. Constant-amplitude oscillations are maintained 
by an air blower, attached to one of the vertical limbs, which is controlled using the 
signal from a capacitance gauge recording the instantaneous water level. 

Two series of measurements were made in the U-tube. For the first set, the model 
was supported a t  each end on strain-gauged load cells, flush with the walls of the 
tube. These measured the total force experienced by the model. Experiments were 
carried out on seven circular cylinders with diameters ranging from 1.91 to 7.48 cm. 
giving valucs of p between 109 and 1665. The water-level and force signals were 
recorded simultaneously on an analogue tape recorder and then discretized and 
processed on a digital computer. 

The purpose of the second series of U-tube measurements was to determine the 
force acting on a small length of the cylinder and to estimate the circulation around 
it. A circular cylinder with a diameter of 3.73 cm. giving p = 416, was used for these 
measurements. The cylinder had two pressure tappings a t  mid-span placed 
diametrically opposite each other. Each tapping was connected to a Sctra 237 
pressure transducer with a range of 5 psi. Velocity measurements around the cylinder 
a t  its centre span were made using a Thermo Systems laser anemometer working in 
forward scatter with a frequency tracker. The velocity and water-level signals, and 
the difference between the pressures observed a t  the two tappings were recorded 
simultaneously on the analogue tape recorder. Recordings were made for a t  least 150 
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FIGURE 1 .  Conditional-averaging scheme. 

cycles of water oscillation. In  order to estimate the sectional force from the pressure 
measurements, recordings of velocity were made a t  a fixed point (the mode-sensor 
point in figure 1) while recordings of the pressure difference were made with the pair 
of tappings set a t  each of 12 equally spaced angular positions around the cylinder. 
The velocity measurement points used to estimate the circulation are also shown in 
figure 1 ( a ) .  The pressure difference across the cylinder a t  +90” to the main flow was 
recorded while velocity measurements were made a t  points (indicated by crosses in 
figure 1 )  on a square circuit surrounding the cylinder. The horizontal component of 
velocity was measured on the horizontal parts (sides 2 and 4) of the circuit and the 
vertical components on the remaining parts. The circulation round the circuit was 
estimated from an integration of the measured velocities. 

The other facility used to generate planar oscillatory flow was an open water 
channel. The working section of this channel is 0.61 m wide, 0.68 m deep, and 3 m 
long. Abovc the working scction there is a carriage which can be driven in sinusoidal 
motion. The motion of the carriage is monitored by a displacement transducer. The 
frequency of oscillation can be varied up to a maximum of about 1 Hz and the 
amplitude in steps of 2.54 cm between 6.35 cm and 31.75 cm. Models are mounted 
vertically in the channel. In this investigation the top end of each model was clamped 
to the carriage and the bottom end was about 1 cm above the floor of the channel. 
The diameter of the models used was 4 cm. Two thin circular end plates, 32 cm in 
diameter and with chamfered edges, were attached to  cach model. The distance 
between the plates was equal to just over Y.5L). 

Two circular-cylinder models were tested in the channel. Each model had pairs of 
pressure tappings with the tappings forming a pair placed diametrically opposite 
cach other. One modcl was used to investigate the forces acting a t  a cross-section of 
the cylinder and the tappings were located a t  mid-span between the end plates. The 
other model was used to investigate the correlation of the fluctuating transverse force 
and the tappings were distributed on two diametrically opposite lines running along 
the length of the model. The pairs of tappings were led to two pairs of pressure 
transducers which were mounted on the carriage. The outputs of thc transducers 
forming a pair wcre subtracted from each other and the resulting pressure-difference 
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signals from two pairs were recorded simultaneously with the displacement signal. In  
the case of the sectional-force measurements, the pressure difference across the 
oscillating cylinder a t  k90" to the line of motion was always monitored while 
pressure measurements were made a t  other angular positions around the cylinder. As 
in the U-tube, sectional forces were estimated from measurements made at  twelve 
equally spaced angular positions around the cylinder. I n  the case of the correlation 
measurements, the two rows of tappings on the model were set a t  k90" to the line 
of motion. 

2.2.  The mode-averaging technique 

The aim is to obtain average cycles of the transverse force but problems arise because 
a t  a given KG the flow can switch between different vortex-shedding modes. 
Furthermore each mode is usually associated with a mirror-image mode which 
generates lift of roughly the same magnitude but of opposite sign. Hence when a 
large number of cycles of the transverse force are ensemble-averaged the result is 
almost zero ~ see Bearman et al. (1981). To obtain more meaningful averages some 
method for recognizing the flow state is required. 

In this paper the flow mode has been inferred from the characteristics of two 
different signals referred to as the mode-sensor signals. The positions of the mode 
sensors are shown in figure 1.  For the pressure measurements made in the U-tube, the 
mode sensor is the transverse component of velocity measured on the centreline of 
the flow near the face of the cylinder. For the remaining measurements (i.e. 
circulation measurements in the U-tube and pressure measurements in the channel) 
the mode sensor is taken as the pressure difference across the cylinder a t  f 90" to the 
line of motion. In  each averaging scheme, the mode-sensor signal is Fourier analysed 
at  frequencies that are multiples of the oscillation frequency and cycles are sorted 
according to both the dominant frequency and phase. Phase is important bccause 
two cycles may generate similar frequency information but their vortex-shedding 
patterns may be in antiphase. 

The type of analysis from which flow modes are determined is illustrated in 
figure 2. For the case shown, KC = 17.5 and the mode sensor is the velocity signal. 
The component, F,, of the mode-sensor signal a t  a dominant frequency, m, is 
defined as 

and a phase angle # is given by 

F, = A ,  sin 27tmt + B ,  cos 27tmt, ( 2 )  

# = tan-' (AJB,) .  (3) 

For a particular frequency, a number density function, P(#)  is computed, defined as 

Number of cycles for which # lies in the range #-$A#o < # < #++A#o 
(Total number of cycles) x A#o 

where A#,, is the bandwidth used for the analysis. P(#) as a function of # is plotted 
in figure 2 for dominant frequencies of N ,  2N,  3N and 4N, where N is the water 
oscillation frequency. For the case illustrated the percentage of the number of cycles 
for which these frequencies were dominant are 25 %, 13 YO, 58 % and 2 % respectively. 
The total number of cycles analysed to generate figure 2 was 2440 and A#o = 10". It 
is seen that at a given dominant frequency, P(#)  has two peaks separated by 
approximately 180". At high KC (KC 2 30) peaks in P ( # )  tended to be less marked 
but are still discernible. In  the basic mode-averaging scheme, each peak was treated 
as a separate flow mode, and cases for which the phase angle lay within 30" of a peak 
were ensemble-averaged as one mode. 

> 
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1i 0.004 

FTOVRR 2 .  Sumher density functions, calculated from thp transverse velocity close to  a 
stagnation point, at KG = 17.5. Dominant frequency: X ,  N ;  A, 2 N ;  0, 3 N ;  [7, 4N. 

Although useful results were obtained by using the averaging scheme outlined 
above, i t  sometimes failed to detect all the modes. For example, flow visualization in 
the U-tube at KC z 10 shows that one vortex pair is shed in every cycle of the tank 
and that thc: pair can convect along four paths, namely 0 z 45", 135", -45", and 
- 135", where 0 is the angle between the vortex path and the positive direction of the 
main flow. Hence there are four basic vortex-shedding modes. The pressure difference 
across thc cylinder at f90" to the line of motion showed that a t  KC = 10 the 
dominant frequency was always 2 N .  At this frequency, P($)  has two sharp peaks 
separated by a phase angle of about 180". Hence the basic averaging scheme 
indioatcd that there were only two modes. Analysis at other harmonics of t,he 
oscillation frequency showed that phase angles were also concentrated around two 
valucs separated by 180". It was found that the four modes could be resolved by 
combining the phase information recorded a t  two frequencies, one of which is an even 
multiplc of the tank oscillation frequency, the other odd. This concept has been 
incorporated into the mode-averaging scheme. 

3. Results 
3.1. Flow visualization 

The rangc of KC from about 3 to 55 can be divided into the following regimes: 
K(: ,< 4, 4 5 KC 5 8, 8 5 KC ,< 15, 15 5 KC 5 22, 22 5 KC 5 30, and KC 2 30. 
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Following Singh (1979) and Bearman ~t al. (1981), the first four regimes will be called 
the symmetric, the asymmetric, the transverse, and the diagonal regimes 
respectively. The regime KC 2 30 will bc called the quasi-steady regime. The main 
difference between the above classification scheme and the one given by Bearman 
et al. (1981) is that  the diagonal regime is now coupled to the quasi-stcady regime 
by a new regime, namely 22 6 KC 6 30. In the new regime, three full vortices arc 
shed per half-cycle and Sawameto and Kikuchi (see Iwagaki et al. 1983) have called 
this regime the third vortex regime. The regime boundaries agree approximately 
with those suggested by Williamson (1985). He reported that an increment of about 
8 in KC generates one more vortex per half-cycle and hence a new vortex pattern. 
The quasi-steady regime can, therefore, be subdivided into additional regimes. 

Singh (1979) and Williamson (1985) performed extensive visualization studies of 
the flow around bluff bodies in oscillatory flow and have described the main features 
in each regime. We have carried out further flow visualizations a t  KC x 7 ,  10 and 18 
where some of our more detailed measurements were made. Like Singh (1979), the 
flow was visualized by using small polystyrene particles illuminated by narrow slits 
of light. The visualization was performed in the U-tube at p = 416. Figure 3 (a)  shows 
sketches of the vortex patterns observed in the asymmetric regime at  KC x 7 .  I t  is 
seen that vortex activity tends to be concentrated on one side of the cylinder (the 
upper side in the sketches). A shed vortex, formed in the previous half-cyclc and 
carried back during flow reversal, is present in each half of the motion. The shed 
vortex remains close to the cylinder and seems to be dissipated as it is carried back 
towards the cylinder during flow reversal ~ see the middle sketch in figure 3(a).  
Vortex patterns observed in the transverse regime a t  KC x 10 are sketched in figure 
3 (6). Vortex activity is one-sided and two vortices with opposite signs are again shed 
in one complete cycle. The shed vortices now form a pair and are able to convect to 
large distances from the model. In  the diagonal regime a t  KC % 18 (figure 3 c )  a pair 
of vortices is shed in each half-cycle and the vortex pair in tho one half-cycle is shed 
diametrically opposite to the pair in the previous half-cycle. In  both the transverse 
and the diagonal regimes, vortex pairs convect at about 45" to the main flow, when 
viewed with the cylinder fixed. 

It follows, because of the possibility of mirror-image modes, that there are two 
primary modes in the asymmetric and diagonal regimes. As discussed in the previous 
section, there are four primary modes in the transverse regime. It was observed that 
a vortex pattern can be stable over a large number of cycles and then change from 
one mode to another. Measurements have revealed that the change does not occur 
abruptly and that as a consequence, a large variety of secondary (i.e. combination) 
modes can be generated. In  these circumstances the number of modes identified will 
depend to some extent on how strictly the mode selection criteria are applied. At 
some KC-values on the boundaries between regimes, up to 10 modes could be 
identified. In this paper, we shall be concentrating only on the predominant modes. 
The fraction, P ,  of the total number of cycles belonging to  the predominant mode, 
including its mirror image, is given in Bearman et al. (1984). P was found to range 
from about unity a t  KC z 10 to 0.35 a t  KC x 50. 

An interesting observation was made in the U-tube a t  KC z 10. Vortices can form 
either in phase along the cylinder or in two apparently independent cells. In  the case 
of the two-cell structure, each cell occupies about half the span of the cylinder and 
in this state a vortex pair moved towards the roof of the U-tube in one cell and 
approached the floor in the other. The pair approaching the floor cleared away 
particles on the floor over about half the width of the tank. Two types of shedding 



474 E .  D. Ohasaju, P.  W .  Bearman and J .  M .  R. Qraham 

FIGURE 3. Vortex-shedding pattern ( a )  in the asymmetric regime a t  KC z 7 :  ( b )  in the 
transverse regime at KC’ z 10; (c)  in the diagonal regime a t  K(‘ z 18. 
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FICCRE 4. Mode-averaged cycles of forces and circulation at KC = 6.75: -. -, in-line force 
coefficient ; -, transverse force coefficient ; - - -, non-dimensional circulation ; - -, free- 
stream relative velocity. 

can also be observed by studying the signals from the transverse-force transducers. 
When the single-cell structure is formed, the transverse-force signal is regular in 
amplitude and frequency whereas in the case of the two-cell structure the signal is, 
probably as a result of movement of the boundary separating the two cells, irregular 
and intcrrnittent. After the water in the U-tube is set into motion either of the two 
flow states can be set up. Once set up, the singlc-cell structure seems to persist 
whereas the two-cell structure can sometimes collapse into a single cell. 

3.2. Sectional forces and circulation 

Figures 4-12 show time histories of mode-averaged data. In  each figure, mode- 
averaged values of the transverse and in-line force coefficients, C, and C, 
respectively, calculated from pressure distributions, are plotted against t / T ,  where t 
is time and T is the period of oscillation. Coefficients have been formed by dividing 
the sectional forces by $pU:D, where U ,  is the amplitude of U ,  the free-stream 
velocity relative to the cylinder. The curve of U I N D  versus t /T ,  where N is the 
frequency of the main flow, is shown in each figure. It should be noted that a half- 
cycle is the period between two consecutive flow reversals, and thus a half-cycle 
begins and ends when U I N D  = 0. Also shown in figures 4, 6 and 8 are time histories 
of the circulation, r,, measured round the square circuit described in $2. Clearly the 
value of the circulation will depend upon the circuit chosen and will be zero for a 
circuit coinciding with the cylinder surface and zero for a very large circuit. The 
circuit used in this investigation encloses the vorticity associated with the near flow 
around the cylinder and is unlikely to contain much of the vorticity associated with 
vortices that have been shed. Note that anticlockwise circulation is positive and that 
I', has been non-dimensionalized by dividing by U ,  D ,  i.e. K ,  = T,/U, D. 

The mode shown in each of the above figures is normally the predominant one. 
Exceptions are figures 6 ( a )  and 9 (a ,  b ) .  In  figure 6 ( a )  we demonstrate the usefulness 
of mode averaging by showing results obtained at KC = 17.5. C,, C,, and K ,  are 

16 FLJI iY6 
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FIGIJRE 5 .  Mode-averaged cycles of forces at KC = 10.6 : -. -, in-line force coefficient; -, 
transverse force coefficient ; - . ----, free-stream relative velocity. 

simply enscmble-averaged over about 200 cycles and little useful information is 
obtained since (7, and K ,  have averaged to almost zero. The explanation for this is 
that  a mirror-image mode is usually associated with each mode found at KC = 17.5. 
A mode and its mirror-image are shown in figures 6 ( b )  and 6 (c) ; both generate lift 
and circulation of roughly the same magnitude but of opposite signs. Figures 9 ( a )  
and 9 ( b )  were recorded a t  KC = 15.8, which is close to the boundary separating the 
transversp and the diagonal regimes. The figures indicate that the flow switches from 
one regime to the other. The similarity between the curves of C, shown in figures 9 (a) 
and 5 suggests that KC = 15.8 is in the transverse regime whereas comparison of the 
forms of the C, curves presented in figures 9 ( b )  and 6(6) suggests the diagonal 
regime. 

The link between the circulation and the transverse force is exhibited most clearly 
a t  KC = 52.6 (figure 8) where the dominant frequency of the transverse force is about 
an order of magnitude higher than the frequency of the bulk flow. The transverse 
force and the circulation appear to fluctuate in sympathy with each other except 
during flow reversal when the force drops to zero and changes sign but the circulation 
remain relatively high. It is interesting to note that the amplitude of the non- 
dimensional circulation, K ,  = T,/U, D, is roughly half that  of C,, and that the lift 
and the circulation tend to be in phase in the half-cycle where UIND is negative. 
Constant circulation during flow reversal is also seen in figures 4, 6 ( b )  and 6 (c). The 
flow velocity along the sides of the circuit used to measure the circulation does not 
remain constant during flow reversal. In fact detailed measurements show that there 
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FIGURE 6(a ) .  Averaged cycles of forces and circulation at KC = 17.5. (b )  Mode-averaged cycles of 
forces and circulation at KC = 17.5. (c) Mode-averaged cycles of forces and circulation a t  KC = 
17.5. (Note that, this mode is the mirror image of the mode shown in b.) --, in-line force 
coefficient ; -, transverse force coefficient ; ~ ~ -, non-dimensional circulation : - . -, free- 
stream relative velocity. 
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FIGURE 7 .  Mode-averaged cycles of forces at KC = 26.2 : - -, in-line force coefficient; ~ - ,  
transverse force coefficient ; -- . -, free-stream relative velocity. 
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FIGURE 8. Mode-averaged cycles of forces and circulation at KC' = 62.6. -.-, in-line force 
coefficient; -. transverse force coefficient; - - -, non-dimensional circulation ; - -, free-stream 
relative velocity. 
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FIGCRE 9 ( a ,  b) .  Mode-averaged cycles of forces at KC = 15.8: --, in-line force coefficient; 
-, transverse force coefficient ; ~. -, free-stream relative velocity 
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FIGURE 10. Mode-averaged cycles of forces for four vortex modes at KC = 10: -. -, in-line 
force coefficient ; -. transverse force coefficient ; - -, free-stream relative velocity. 

are very large changes (probably caused by movement of vortices during flow 
revcrsal) in the flow along some parts of the circuit, but the circulation around the 
circuit is conserved. 

The measurements associated with the vortex patterns sketched in figures 3 ( a ) ,  
3(6).  and 3 ( c )  are presented in figures 4, 5 and 6 ( b )  respectively. Using these figures 
one can relate the generation of forces to the development of vortices. For example 
when flow reversal occurs as sketched in figure 3 (c), that  is with the weaker of the two 
returning vortices being drawn across the back face, figure 6 ( b )  indicates that  the 
fluctuating lift changes sign before the main flow reverses. This mode of reversal will 
be called the normal mode because i t  seems to occur most often. The mode of reversal 
in which the stronger vortex is drawn across the back face, as shown in the middle 
sketch of figure 3 ( b ) ,  will be referred to as the cross-mode. Figure 5 indicates that  in 
thc cross-mode, the fluctuating lift changes sign after the main flow 
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FIGURE 11. Mode-averaged cycles of force a t  (a )  low /J’, ( b )  high /J’, for KC = 18 
Notation as in figure 9. 

Examples of mode-averaged data recorded in the channel with the cylinder 
oscillating are shown in figures 10 and 11. That there is close agreement between the 
transverse forces recorded under similar conditions in the U-tube and the channel 
can be confirmed by comparing figure 5 and 10 which indicate the same mode. In  
making this comparison, allowance should be made for the fact that in the first half- 
cycle of the figures, U is positive in the curve for the U-tube but negative in the 
curves for the channel. Curves of the in-line forces for the U-tube and the channel are, 
of course, not directly comparable. Being stationary, the model in the U-tube 
experiences an additional in-line force (the Froude-Krylov force) associated with the 
pressure gradient needed to oscillate the fluid. 

As reported earlier, four primary modes of vortex shedding can be found in the 
transverse regime. The curves of C, and C, for the four modes are shown in figure 10. 
It was found that once one of the four modes is established, it is stable. The mode 
could be changed either by stopping the oscillating model and then starting up the 
motion again from a stage of rest or by applying a strong perturbation to the flow. 
Figures 11 ( a )  and 11 (6) indicate that two fundamentally different modes of shedding 
were found in the cha.nne1 a t  KC = 18; for /3 = 634 (figure l l a )  the dominant 
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FIQURE 12. Mode-averaged cycles of steady plus fluctuating forces at KC! = 14. 
Notation as in figure 10. 

frequency of the transverse force is 3N whereas for /3 = 1579 (figure l ib),  the 
dominant frequency is 2 N .  This was unexpected because the curve of C, recorded by 
Matten, Hogben & Ashley (1979) a t  KC z 18 and Re = 2.7 x lo5 (i.e. p E 15000) is 
similar to our curve for /3 =634. 

3.3. Estimation of mean transvwse force 

Based on the observation that the vortex activity in the transverse regime takes 
place mainly on one side of the cylinder, there has been some speculation that the 
cylinder may experience a steady transverse force in addition to  the fluctuating 
transverse force already shown in figures 5 and 10. To investigate this possibility, the 
steady part of the pressure-difference signal used to compute the sectional forces was 
monitored while the side of the cylinder on which the majority of vortex activity was 
concentrated was switched by perturbing the flow field. These observations were 
made in the water channel because the flow field could more easily be perturbed in 
this apparatus. KC = 14 was chosen for these experiments because it is close to a 
boundary of the transverse regime. Vortex patterns are expected to be less stable, 
and therefore easier to switch, near a boundary. Observations of the pressure 
difference were again made at twelve angular positions around the cylinder. It was 
found that when the switch was achieved, the voefficients of the steady component 
of the sectional transverse and in-line forces changed by 1.08 and 0.06 respectively. 
(Coefficients are again formed by dividing the sectional force by $pUi U . )  Hence the 
magnitude of the steady transverse force was estimated to be about 0.5 and that of 
the steady in-line force to be negligible. Figure 12 shows a mode of the transverse 
force recorded in the channel at KC = 14 with the steady transverse-force coefficient, 
which for this mode is -0.5, added to the unsteady transverse force. 

3,4. Measurements of forces 

The complete set of in-line force data is shown in figure 13 (a ,  b )  where values of the 
drag and inertia coefficients calculated from Morison’s equation are plotted against 
KC. The average cycle of the in-line force was formed by ensemble-averaging about 
200 successive cycles of the force signal, and G, and C, have been calculated from 
the Fourier coefficients of the part of the force a t  the oscillation frequency. The 
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(a)  Drag coefficient versus K C .  ( b )  Inertia coefficient versus KC.  A, p =  109; 
0, 196; +, 301; 0, 483; V, 964; *, 1204; X ,  1665. 

results shown are for seven values of /I, namely 109, 196, 301, 483, 964, 1204 and 
1665. 

Figure 13(a) indicates that  there is a range of /I in which C, is not so sensitive to 
changing p, For KC 5 30, the upper boundary of the range lies somewhere between 
/3 = 964 and 1204. It is seen that in the U-tube, C, can take two values when KC is 
in the transverse and the diagonal regimes. Some experiments were made in which 



484 E .  D. Obasuju, P. W .  Rearmun and J .  M .  R. Graham 

I I I I I I I I I 

5 10 I5  20 25 30 35 40 45 50 
KC 

FIGURE 14. Comparison of total force (i.e. strain gauge) and sectional force (i.e. pressure) data. 
Load cells data:  0, p = 483; v, 964. Pressure data:  x , U-tube, p = 416; ., channel, p = 631 ; A, 
rhannel, p = 927. 

the transvcrse force was monitored a t  one end of the cylinder while the load cell was 
in the in-line force direction a t  the other. These observations suggest that the higher 
values of C, occur in runs where the spanwise coherence of vortex shedding is high. 
For the transverse regime, this suggests that the lower values of C, are associated 
with the two-cell structure described earlier. 

Values of C, and C, calculated from sectional-fbrce (i.e. pressure) measurements 
in the U-tube and in the water channel are compared in figure 14. The coefficients 
shown are calculated from the average cycle. The coefficients for the different vortex 
modes are not shown because they do not differ much from those for the average 
cycle. In  presenting figure 14, one has been added to the C, values recorded in the 
channel. Also shown in figure 14 are results obtained in the U-tube from 
measurements of the total force using the load cells. Generally, the agreement 
between the different sets of data is very good. At high KC some small differences 
appear between the channel and U-tube data. In this regard, the influence of the 
disturbance generated a t  the free surface of the water in the channel may be 
important. For although end plates were used, these were of finite size and there will 



Forces, circulation and vortex patterns around a circular cylinder 485 

be a KC value above which the plates can no longer contain the entire flow generated 
by the oscillating cylinder. That end plates can have a significant influence on the 
data recorded with a circular cylinder oscillating in still fluid has been demonstrated 
by Matten et al. (1979). 

Cycles of the transverse force measured with the load cells were sorted into modes 
using the basic averaging scheme described in $2.2. For this case, an additional 
mode-sensor signal is not required ; the mode-averaging analysis was performed on 
the transverse-force signal itself. The coefficient of the transverse force was 
calculated by dividing the force by tpU: DL, where L is the length of the cylinder, 
and the highest magnitude of the coefficient (CLmax) was determined for each mode, 
In presenting the results, a mode and the corresponding mirror-image mode are 
considered as a pair and the higher of the two values of CLmax calculated for a pair 
is shown plotted against KC in figure 15(a). For this figure, p = 483 and the symbols 
used have been chosen so as to indicate the dominant frequencies of the transverse 
force. For example the figure shows that the dominant frequency is 2N a t  KC x 10 
but can be 6N, 7 N ,  8N, or 9N a t  KC % 42, depending on the mode. Also shown in 
figure 15 (a)  are values of CLmax obtained from integrated pressure measurements, 
such as those presented in figures 4-9. In the case of the pressure data, only the 
predominant mode, and its mirror image, has been considered. Figure 15 ( b )  shows 
the root-mean-square value of the coefficient of the transverse force, CLrms, for just 
the predominant mode using the pressure integration technique. 

As expected from earlier work (e.g. Sarpkaya 1975; Maull & Milliner 1978; Singh 
1979; Ikeda & Yamamoto 1981 ; Bearman et al. 1981 ; Williamson 1985), there are 
distinct peaks in CLmax (figure 15a) at values of KC of about 10 and 17.  As described 
by Maull & Milliner (1978) and Williamson (1985), the peak a t  KC z 10 is associated 
with a dominant frequency of 2N and that a t  KC % 17 with 3 N .  At KC x 26, the 
location of the third peak in figure 15 (a) ,  the dominant frequency of the transverse 
force was found to be 4N for about 90 YO of the cycles examined and 5N for only 4 YO 
of the cycles. Although a fourth peak at  KC x 32 has been ident,ified by Ikeda & 
Yamamoto, we found for KC >, 32 that  GLmax decreases more or less monotonically 
with increasing KC. 

Ikeda & Yamamoto (1981) have reported that peaks in CLmax occur at KC-values 
where vortex shedding is stable and regular. They suggest that a t  troughs vortex 
shedding is unstable and that this is where changes in the vortex regime occur. Based 
on this criterion, the data in figure 15(a) suggests that KC z 14, 22.8 and 30.5 are 
possible boundary points between regimes. The boundary separating the regimes can 
also be inferred from the double-valuedness of C, in both the transverse and the 
diagonal regimes. This criterion gives (figure 13) KC = 8.5, 15 and 22. 

3.5. Correlation of fluctuating transverse force 

Results of correlation measurements made in the channel are presented in figure 
16 (a).  They have been calculated, without mode-averaging, from about 200 
successive cycles of the data. The correlation coefficient, R ( p ,  z ) ,  measured between 
two sections is plotted against the spanwise separation, z / D ,  for eight values of KC. 
R ( p ,  z )  is defined as 

R ~ P ,  2) = ~ / ( ~ ~ r m s f ' 2 r m s ) ~  

where Pi and Pi are the fluctuating parts of the pressure difference recorded a t  the 
two sections, Plrms and PZrms are the root-inean-square values of Pi and Pi, and each 
pressure difference is measured in an axial plane a t  k90" to the line of motion. 
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FIGURE 15. (a) Mode-averaged C, versus KC. Symbols and dominant frequency for total force data:  
0, 2 N ;  0, 3 N ;  A, 4N; V, 5 N ;  +, 6 N ;  V, 7 N ;  e, 9 3 .  Sectional-force da ta  for the predominant 
mode : x . (b )  Values of CLrms for the predominant mode, calculated from pressure measurements, 
versus KG. 

Plotted in figure 16 (a) are curves of R ( p ,  z )  recorded a t  KC-values in the middle of 
vortex-shedding regimes. Shown for comparison are the results recorded at KC = 22, 
which is near a boundary. I n  figure 16(b) are presented the results recorded a t  KC- 
values where boundaries between regimes are expected, together with the results for 
KC = 34. The solid curves in figure 16(a, b) are given by e-0.215(21D). Novak & Tanaka 
(1976) have suggested that a curve of the form e-K(zID), where K is a constant, can 
be used to estimate the correlation length of fixed and oscillating circular cylinders 
in both steady and turbulent approach flows. R ( p ,  z )  = e-o.z15(z/D) gives a correlation 
length of 4.650 which is similar to the value found on a stationary circular cylinder 
in steady flow a t  subcritical Reynolds number. 

Results in figure 16(b) indicate that the lift is correlated strongly a t  KC = 10 and 
18, which are roughly the positions of the first and second peaks in CLmax (figure 15a). 
For KC = 10, R(p,  z )  is near unity for all values of z / D  examined and the two-cell 
structure found in the U-tube a t  this KC was not observed in the channel. Figure 
16(a)  shows that the correlation is strong a t  KC = 26, which is roughly the position 
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FIGURE 16. Average values of correlation coefficients versus spanwise separation. (a )  V, KC = 10; 
0, 18; *, 18; 0, 22; a, 26; +, 34; H, 42. ( b )  0, KC = 22; V, 30; +, 34; ., 42; -, e-0.215(riD). 
Note /3 = 683 except for the case denoted by * where /3 = 1597. 

of the third peak in the curve of CLmax versus KC. By contrast the correlation of the 
lift at KC = 22 is particularly poor. That the correlation is lower where there is a 
trough in the CLmax curve is also indicated by the fact that the correlation recorded 
a t  KC = 30 is less than at KC = 34 - see figure 16(b). 

At high KC (KC 2 30), the correlations recorded were similar a t  all values of KC. 
It is seen (figure 166) that the empirical curve giving a correlation length of 4.650 
provides a fairly good fit to the data. This finding adds weight to the argument that 
the range KC 2 30 can be considered as one vortex-shedding regime (i.e. the quasi- 
steady). 

It was found that a t  a given KC, a switch in the mode of vortex shedding takes 
place when the level of the fluctuating pressure difference (and hence transverse 
force) is low. The change does not occur simultaneously over the cylinder span and 
for large spanwise separations, instances can be found when the signals are 180" out 
of phase. 
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4. Discussion of results 
The distinctive features of vortex shedding in planar oscillatory flow have been 

summarized by Bearman (1985) as follows. Vortex shedding in each half-cycle is 
initiated by vortices generated in a previous half-cycle and carried back past thc 
body during flow reversal. Vortices convect away from a cylinder by pairing with 
vortices of opposite sign. Every time KG is increased by about 8 an additional full 
vortex is shed during a half-cycle and the pattern of shedding is found to change. To 
this list we add that when KC is high enough for the flow to be asymmetric, vortices 
of opposite sign are shed alternately. This means that if the last vortex shed in a half- 
cycle has clockwise circulation, the first vortex shed in the next half-cycle will have 
anticlockwise circulation. 

As reported in the introduction, in the Reynolds-number range studied here a 
quasi-steady model which assumes a constant Strouhal number S = 0.2 can be used 
to predict the time history of the transverse force on a circular cylinder in planar 
oscillatory flow. The concept of a constant Strouhal number appears to be confirmed 
by the finding that an increment of about 8 in KC generates one more full vortex per 
half-cycle. For suppose that the instantaneous frequency of shedding of vortices of 
the same sign is A'UlD, where U is the instantaneous velocity. Then, using 

2nA 
T 

u = ~ sin (F), 
where A and T are the amplitude and period of the bulk flow respectively, the 
number, F ,  of vortices of the same sign shed per cycle is 

The number P can be interpreted as the ratio of the mean frequency of vortex 
shedding during a cycle to the frequency of oscillation of the bulk flow. Since vortices 
of opposite signs are shed alternately, we deduce from this result that  two additional 
full vortices (one positive and the other negative) are shed per cycle every time KC 
increases by n/2S. Using S = 0.2, we predict that  an additional full vortex is shed per 
half-cycle when KC increases by 7.85 ; i.e. roughly 8. At higher Reynolds numbers the 
value of 8 used may have to be modified. 

An interesting result of the present investigation is that  in the transverse vortex 
regime, thc circular cylinder experiences a steady transverse force with a coefficient 
of about 0.5 at KC = 14. The vortex pattern observed in this regime is sketched in 
figure 3 (h) .  One dominant vortex is formed in each half-cycle and the vortex always 
appears on the same side of the cylinder. This results in the formation of a transverse 
vortex street on that side of the cylinder (Williamson 1985), and hence there is a 
mechanism for generating a steady force. It appears that  in the U-tube vortex pairs 
move at about 45' to the direction of the undisturbed stream and are convected by 
both the main flow and their mutually induced velocity. When the frame of reference 
is fixed relative to the fluid, it is expected that the path of the vortices will be 
inclined at more nearly 90' to the line of motion. 

Vortex development in the transverse regime is illustrated further by photographs 
(figure 17, plate 1) taken in the U-tube at KC 10 and /3 = 416. The flow was 
visualized by using polystyrene particles. Two narrow slits of light, one orange and 
the other blue, wcre projected across the model at roughly a quarter and three- 
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FIGURE 17. Visualization of vortex shedding in the transverse regime at KC = 10. Note that different 
flow patterns are exhibited in the blue and orange view planes. 
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FIGURE 18. Simple model of flow during reversal. 

quarter span giving a separation between the view planes of about half the length of 
the cylinder. I n  figure 17 ( a )  the flow is from right to left and in both view planes, a 
pair of vortices shed a t  the bottom of the cylinder is convecting away. The vortices 
are not very distinct but there is a region of high velocity in between the vortices that 
is marked by long particle streaks. These streaks give the impression that a jet of 
fluid has been expelled from the cylinder. 

The existence of the two-cell structure described earlier is demonstrated in figure 
1 7 ( b ) .  The flow is again from right to left and in the orange view plane, a pair of 
vortices shed from the bottom of the cylinder is again convecting away. This time, 
however, there is no shedding in the blue view plane. That different flow patterns are 
exhibited in the two planes is evident from the way the long orange streaks left by 
the shed vortex pair cross the blue streaks. Vortex development in the blue view 
plane is at the stage indicated by the sketch that is second from the bottom in figure 
3 ( b ) ,  and shedding will occur a t  the top of the cylinder when the flow is from right 
to left. We have no explanation for the formation of this two-cell structure in the 
U-tube. 

The circulation results are thought to merit further consideration if only because 
such measurements are rarely made. For all the cases examined it was found that a t  
the beginning of a half-cycle the circuit around the cylinder already had a circulation, 
which in some cases (e.g. figures 4 and 6 b )  could be almost as large as the maximum 
value obtained during a cycle. At the beginning of a half-cycle vortices are present 
that  have not been convected away by the mechanism of pairing. These vortices and 
their images in the cylinder influence the future development of the flow. 

The role of the image and free circulation in determining the future vortex pattern 
can be indicated with the aid of a very simple model. It is assumed that the fluid is 
ideal and that vortices can be represented as point vortices. In  steady flow past a 
cylinder i t  can be argued that if the strength of a fully formed vortex is fo then the 
circulation around the cylinder must fluctuate between +-+ro, if there is no mean 
transverse force present. Our measurements of circulation around a circuit 
surrounding a cylinder indicate that, apart from near flow reversal, vortices of a 
nearly uniform strength are shed, a t  values of KC where several vortices are expected 
per half-cycle (e.g. see figure 8). Near the end of a cycle there may be insufficient time 
for vortices, still being fed by circulation from the cylinder shear layers, to attain 
their full strength. Having these factors in mind the simple flow model indicated in 
figure 18 has been analysed. 

The stronger of the two returning vortices is modelled by a point vortex with 
anticlockwise circulation. rA; for the sake of simplicity, the strength of the weaker 
vortex is assumed to be negligible compared to rA. Vortices form close to the cylinder 
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FIGURE 19. Vortex strength versus Reynolds number : 0 ,  I, steady-flow results (Gerrard 
1978) ; x, oscillatory flow result, KC = 52.6. 
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and have a size of the order of the cylinder diameter, hence it is argued that the (free) 
vortex can be placed a t  x = D. The image of the free vortex has circulation -r, and 
is positioned at  x = +D. In  addition we suggest that  there will be a circulation gro 
around the cylinder, where f o  is the strength of a fully formed vortex. Hence the 
total circulation on the cylinder will be irO--r,. At flow reversal the vertical 
component of the velocity of the free vortex in figure 18 is 

Hence V, is expected to be positive if f J f 0  < 0.375 and negative if rA/fo > 0.375. 
In figure 18 the flow has been from left to right and since the free vortex has 

anticlockwise circulation, it must have been formed from the lower shear layer. If 
V, is negative we expect the normal mode of reversal with the vortex passing under 
the cylinder. When it reaches the other side i t  will have the effect of increasing the 
velocity near the cylinder and will accelerate the shedding of the next vortex from 
that side. If V, is positive we expect the cross-mode with the free vortex passing over 
the cylinder and enhancing the next vortex to  be shed from the top. Although the 
model presented here can be easily criticised it does suggest that there is a critical 
vortex strength that determines whether a vortex returns over or under the cylinder. 
If KC is such that a vortex is close to this critical value then the mode of reversal can 
be switched either by a small change in the st’rength or position of the free vortex. 
We suspect that  this is the reason why a t  some values of KC the shedding mode is 
stable whereas a t  others it is unstable. 

Returning to  the measurements of circulation, it is assumed that the time-mean 
value of the circulation is zero and that the shedding of vortices of strength f o  leads 
to a circulation around the cylinder oscillating between -+ifo.  Hence the non- 
dimensional vortex strength, f o / n U o  D, is found to range from 0.51 to 0.55, 0.70 to 
1.03 and 0.27 to 0.40 for KC = 6.75, 17.5 and 52.6 respectively. Since KC = 52.6 is 
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well within the quasi-steady regime, we shall compare the estimate of strength for 
this KC with steady-flow values. Figure 19 shows that the estimate for KC = 52.6 is 
comparable with, but lies below, the mean of the results for steady flow taken from 
Gerrard (1978). The oscillatory-flow result seems to be lower because i t  has been non- 
dimensionalized by U,, the maximum value of the free-stream velocity. 

I n  order to compare the vortex strengths estimated at different KC values, vortex 
strengths were non-dimensionalized by using the maximum velocity of the bulk flow 
at  KC = 6.75. The result is that vortex strength still ranges from 0.51 to 0.55 a t  
KC = 6.75 but is now 1.81 to 2.67, and 2.10 to 3.12 a t  KC = 17.5 and 52.6 
respectively. It is suggested that vortices are tending to grow to more or less the same 
full circulation and that vortex strength is low a t  KC = 6.75 because, in the 
asymmetric regime, the full circulation cannot be attained before flow reversal. It is 
believed that full strength is first attained in the transverse regime. The idea that 
vortices tend to form to the same strength is supported by the circulation 
measurements made a t  KC = 52.6. It is seen, particularly in the first half-cycle of 
figure 8, that  over a half-cycle there is not much change in the amplitude of the 
circulation even though the free-stream velocity varies sinusoidally and vortices are 
shed from different points in a half-cycle. 

We have found that the lift and the circulation around the circuit we have chosen 
tend to fluctuate in sympathy with each other. This suggests that i t  might be possible 
to infer the lift from the circulation and vice versa. To test this possibility, the 
measured sectional lift is compared in figure 20 with the lift force per unit length, 
FL, calculated from 

F~ = (4) 

where FL, U and r, are instantaneous values of the lift, relative bulk-flow velocity, 
and circulation respectively. Recall that the sign convention adopted in this paper 
is that anticlockwise circulation is positive, and positive U is from left to right, i.e. 
along the x-axis. In  steady flow equation (4) is the Joukowski circulation-lift 
theorem. For U = U ,  sin (27ct/T), the lift coefficient given by (4) is 2 ( r B / U ,  D) 
sin (2n t /T )  when the lift force per unit length is non-dimensionalized by dividing by 
&AJi D. This and the measured lift coefficient have been plotted against t / T  in figure 
20(a-e) for KG = 6.75, 17.5 and 52.6. At KG = 52.6, there is (figure 20c) a half-cycle 
where the predicted lift (equation (4)) is in good agreement with measurement. For 
KC = 6.75 and 17.5, the overall agreement is less good but gross features of the 
curves of the measured lift such as the positions of the peaks and the troughs are still 
well predicted. It seems that (4) may be considered a good first approximation to the 
unsteady lift. This is a remarkable finding that we cannot explain and may be 
fortuitous. 

5. Conclusions 
The development of flow around a circular cylinder has been investigated in the 

range of Keulegan-Carpenter number, KC, from about 4 to 55. Following earlier 
workers, this range is divided into five regimes: 4 5 KC 5 8, 8 5 KC 5 15, 15 5 
KG 5 22, 22 5 KC 5 30 and KC 2 30. These regimes are called the asymmetric, the 
transverse, the diagonal, the third vortex, and the quasi-steady regimes respectively. 
In  the transverse regime, the cylinder experiences a steady sectional lift force whose 
coefficient when non-dimensionalized by tpU: D is estimated to  be 0.5 at KC = 14. In  
this regime, a vortex pair is shed only in one half of a complete flow cycle and the 
steady lift is associated with the tendency for the shed vortices to form a street on 
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FIGURE 20. Comparison of the measured transverse force with the prediction of the generalized 
circulation-lift theorem. (a )  KC = 6.75; (bj  KC = 17.5; (c) KC = 52.6. -, measured transverse 
force coefficient ; - - -, prediction of the generalized circulation-lift theorem. 

one side of the cylinder. Another interesting observation made in the transverse 
regime is that in the U-tube, vortices were sometimes shed in two cells, each cell 
occupying roughly half the length of the cylinder. 

Cycles of the flow have been sorted according to the mode of vortex formation and 
for each regime, curves of the time history of the transverse and in-line forces for a 
typical mode are presented. Corresponding curves of the time history of the 
circulation around a circuit enclosing the cylinder are presented for the asymmetric, 
the diagonal, and the quasi-steady regimes. The magnitude of the circulation is found 
to remain more or less constant during flow reversal. Based on the idea that the 
shedding of a vortex leads to the generation of a bound vortex of equal strength but 
of opposite sign, vortex strength r',,/nU0 D is estimated to range from 0.51 to 0.55, 
0.70 to 1.03 and 0.27 to 0.40 a t  KC = 6.75, 17.5 and 52.6 respectively. Using these 
results we have suggested that in all regimes, fully formed vortices have roughly the 
same circulation. A remarkable finding is that PUT, (where r, and U are 
instantaneous values of an approximation to the circulation around the cylinder and 
the undisturbed flow relative velocity respectively) is a fairly good approximation to 
the instantaneous lift. 

Measurements show that the spanwise correlation of vortex shedding does not 
decrease monotonically with increasing KC. For KC < 30 the correlation is high a t  
the centre of a vortex regime and low at  the ends. For KC > 30, the correlation is no 
longer very sensitive to KC and a curve giving a correlation length of about 4.650 
provides a fairly good fit to the data. 
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